
The Pythagorean theorem 
Chapter 2 of the book 'From question to question'. 

 
You may have come across a famous property of right-angled triangles known as the Pythagorean theorem. We 
begin this chapter with the rediscovery of this theorem and why it was so popular with the builders of ancient 
Babylon and Egypt. We will then follow in the footsteps of Pythagoras and his disciples to understand the reasons 
for the emergence of new numbers: the irrationals. We will also offer a little calculation on these new numbers 
and finish with an important application of the theorem. 
 

 
 
 
Towards the statement of the theorem 
 

 
 

Figure 1 

Cut each of the two small squares along a diagonal. The four overlapping triangles thus obtained fill, without 
overlapping, the large square (Figure 2). So, the area of the large square built on the hypotenuse of the isosceles 
triangle is the sum of the areas of the squares built on the other two sides. 

Figure 2  Figure 3 

  

Pythagoras was born on Samos, a small island near Asia Minor, in the 6th century BC. Around 530 BC, he settled in 
Crotone, in southern Italy. There he founded a community, known as the Pythagoreans, which was both religious and 
political, organised on an egalitarian model. It promoted moral and civic virtues such as courage, austerity, self-control, 
moderation, effort and collective discipline. 

The Pythagoreans also attributed a mystical role to numbers in the context of religion. They believed that the universe 
and everything in it could be explained using natural numbers. Conceived in this way, mathematics went far beyond the 
practical recipes used by craftsmen, merchants and navigators. 

The ancient Greek cities cultivated the practice of public debate, which was often passionate. They discussed major issues 
of general interest. For this reason, the art of persuasion was perfected. It is likely that it was because they were imbued 
with this culture of argumentation that Pythagoras and the Greeks turned mathematics into a demonstrative science, i.e. 
a science in which you must convince others of the accuracy of your assertions. 

Problem 1 
Consider an isosceles right-angled triangle and the squares on its sides. Can the two small squares be cut into 
pieces and the large square be put back together using these pieces? 



 
In problem 1, the two squares constructed on equal sides of the isosceles triangle are identical, and the area of 
the large square is double the area of each of the small squares. This suggests one or other of the following 
constructions to solve this problem (Figure 4). 

 

    Figure 4 

 

 
Let's look first at a few cases of isosceles triangles (Figure 5). 

 

  Figure 5 

 

The sum of the areas of the squares on the short sides is either smaller or larger than the area of the square on 
the third side. 

Next, consider non-isosceles triangles. Take, for example, any triangle and a right-angled triangle (Figure 6). 

   Figure 6 

In this case, it seems, by measurement and calculation, that only the right-angled triangle has any chance of 
possessing the property in question. But how can this be verified in general, and in particular when the 
dimensions of the triangle are much larger than a sheet of paper in a book or notebook? 

At this stage of our research, the property mentioned above is still only a conjecture, i.e. a property that we think 
is true but of which we are not entirely sure. Let's look for proofs of the conjecture; when we have found one, it 
will become a theorem. 

The next question briefly returns to the isosceles triangle of Problem 1 to prepare arguments for the proof for 
all right-angled triangles. 

 

Problem 2 
How do you construct a square whose area is twice the area of the original square? 

Problem 3 
We saw in the solution to Problem 1 that the area of the square constructed on the hypotenuse (which is the 
longest side) of an isosceles right-angled triangle is equal to the sum of the areas of the squares constructed 
on the other two sides. Do other triangles also have this property? 



 
This construction provides further proof that, in the case of isosceles right triangles, the sum of the areas of the 
squares constructed on the sides of the right angle is equal to the area of the square constructed on the 
hypotenuse (Figure 7): in fact, the coloured areas are equal. 

     Figure 7 

Can you imagine two such arrangements if the right-angled triangle is not isosceles? 

 
Using Figure 7 as a starting point, we obtain Figure 8. In the square on the left, the coloured space, 
complementary to that occupied by the four triangles, is equal to the space occupied by the squares built on the 
sides of the right angle of the initial right-angled triangle. In the square on the right, the coloured space not 
occupied by the same four triangles is equal to the square built on the hypotenuse. 

 

   Figure 8 

 

The construction in Figure 8 can be reproduced for any right-angled triangle. The result is therefore established 
for all right-angled triangles and is known as the Pythagorean Theorem: 

In a right-angled triangle, the area of the square constructed on the hypotenuse is equal to the sum of the areas 
of the squares constructed on the other two sides. 
 
The Pythagorean theorem in terms of lengths 
 
The version of the Pythagorean theorem given in the solution to problem 1 is the most useful in applications. 

 
Add the areas of the two squares with given sides to obtain the area of the square with unknown side: 

302 +  402 = 900 + 1 600 =  2 500 = 50² • 

Since the area of this square is 2500 cm², this means that its side measures 50 cm. 

This question suggests another formulation of the Pythagorean theorem. 

Let 𝑎𝑎 and 𝑏𝑏 be the lengths of the two sides of a right-angled triangle and 𝑐𝑐 the length of its hypotenuse. Then the 
numbers 𝑎𝑎, 𝑏𝑏 and 𝑐𝑐 satisfy the following equality: 

𝑎𝑎2 +  𝑏𝑏2 = 𝑐𝑐². 

Problem 4 
Draw twice the same square whose side length is equal to the sum of the side lengths of the right angle of 
the given isosceles right-angled triangle. Arrange four triangles identical to the isosceles right triangle so that 
one shows the two squares constructed on the sides of the right angle, and the other shows the square 
constructed on the hypotenuse. 

Problem 5 
Cut out four copies of a right-angled triangle of your choice and draw twice a square whose side length is 
equal to the sum of the lengths of the sides of the right angle of your triangle. 
Is it also possible to arrange the four triangles in these squares in a way that proves the Pythagorean 
property? 

Problem 1 
The area of one square is the sum of the areas of two other squares. These two squares have sides of 30 cm 
and 40 cm. What is the side of the first square? 



In the next question, we will discover a method that enabled the builders of Babylon and ancient Egypt to 
construct walls at right angles. 

 

     Figure 9 

If the angle between the two walls is right-angled, then triangle ABC is right-angled at C and the hypotenuse [𝐴𝐴𝐴𝐴] 
measure 50 cm. You can only build one triangle whose sides measure 30, 40 and 50 cm. (Math 1, VI 3, p.254). 
We can see for ourselves by building it to scale, using the compass. 

In the problem of the mason's square, we established the following result: if in a triangle the lengths of the sides 
satisfy the relation 302 +  402 = 50², then this triangle is a right-angled triangle whose hypotenuse measures 
50 cm. We can generalise this result: 

If the distances between three points 𝐴𝐴, 𝐴𝐴 and 𝐶𝐶 are equal to: |𝐶𝐶𝐴𝐴|2 + |𝐶𝐶𝐴𝐴|2 = |𝐴𝐴𝐴𝐴|², then triangle 𝐴𝐴𝐴𝐴𝐶𝐶 is right-
angled at 𝐶𝐶. 

Problem 2 
To check the right angle between two walls, a bricklayer proceeds as follows: starting from a point C on the 
intersecting edge of the two walls, he marks a point A situated horizontally 30 cm from C (on one of the two 
walls) and similarly, on the other wall, a point B 40 cm from C. He then measures the length of the wire 
stretched between the two marks (Figure 9). 
What should the result of his measurement be if the angle is indeed right-angled? Why or why not? 


