

Module 2: Didactics in Mathematics – Day 2 Part II

August, 19-23, Antwerp Mrs. Gilberte Verbeeck

Exercise 1

- Duo assignment (20')
- One person solves the given problem: see info front page
- The other person observes and writes down which mathematical reflexes and methods are being used to solve the problem: see info back page

Exercise 1

Solve the following problem (20'):

The floor of a rectangular room is covered with (entire) square tiles. The room is m tiles wide and n tiles long. Half of the tiles are on the edge. For how many room sizes is this possible?

(A) none (B) 1 (C) 2 (D) 3 (E) more than 3

(Flemish Mathematics Olympiad volume 1996, 2^e round, question 18)

Exercise 1

Solution?

- How did you arrive at this solution?
- How did you proceed?

Problem-solving skills

- In exercise 1 you used your problem-solving skills
- Problem = ?
 - Task/question/exercise for which you do not immediately know how to find a solution

• What is essential when solving problems?

- Based on your experiences?
- According to Schoenfeld? (Referentie: A. H. Schoenfeld, Mathematical problem solving, Academic press, 1985)

Ability to solve mathematical problems is based on...

Knowledge base, substantive background (resources)

i.e. knowledge of definitions, properties, techniques and frequently used methods, but <u>also insight and intuition into the learning material involved</u>

BUT KNOWLEDGE ALONE IS NOT ENOUGH!

Ability to solve mathematical problems is based on...

Knowledge base, substantive background (resources)

i.e. knowledge of definitions, properties, techniques and frequently used methods, but <u>also insight and intuition into the learning material involved</u>

BUT KNOWLEDGE ALONE IS NOT ENOUGH!

ALSO NEEDED:

Problem solving heuristics

Problem solving heuristics

- are advice that increases the chance of finding the solution, but without guarantee of success.
- are **general**: they do not relate to one specific piece of learning material
- e.g.
 - make a figure
 - enter good notations
 - structure the elements of the assignment
 - work from back to front
 - first consider a special case
 - view extreme cases
 - translate the problem into a more suitable representation
 - drop a condition

...

- Ability to solve mathematical problems is based on...
 - Knowledge base, substantive background (resources)
 - Problem solving heuristics
- BUT THIS ALONE IS NOT ENOUGH!

- Ability to solve mathematical problems is based on...
 - Knowledge base, substantive background (resources)
 - Problem solving heuristics
- BUT THIS ALONE IS NOT ENOUGH!
- ALSO NEEDED:
 - Monitoring and control (Metacognition)

Monitoring and control (Metacognition)

Agile management of the solution process

- Planning, interim evaluation, making decisions, ...
- In this way, string together heuristics and substantive background

• Why?

- Interpret heuristics (differently) for each problem
- Select custom heuristics

- Ability to solve mathematical problems is based on...
 - Knowledge base, substantive background (resources)
 - Problem solving heuristics
 - Monitoring and control (Metacognition)

BUT THIS IS STILL NOT ENOUGH!

- Ability to solve mathematical problems is based on...
 - Knowledge base, substantive background (resources)
 - Problem solving heuristics
 - Monitoring and control (Metacognition)

- BUT THIS IS STILL NOT ENOUGH!
- ALSO PLAY A ROLE:
 - **Beliefs** and **feelings**

Opinions, beliefs

- about the subject of mathematics
 - e.g. congruence cases of triangles in the proofs from the lesson BUT ALSO as an aid in searching for a problem
 - Using mathematical knowledge = **believing in its usefulness**
- about what is expected of students
 - e.g. giving up searching too quickly because of the belief that 'finding something yourself = genius'
- about...

Feelings

- e.g. discouragement if it doesn't work immediately
- e.g. confidence in one's own abilities

• Take these views and feelings into account!

Views and feelings can change due to experiences, e.g

- attention to the **usability** of mathematics
- to gain success experiences in solving problems
- being able to solve problems yourself = growth in self-confidence
- provide feasible, challenging assignments (differentiate!)
- learning that mathematics is not "finished" every search process can lead to new, interesting things

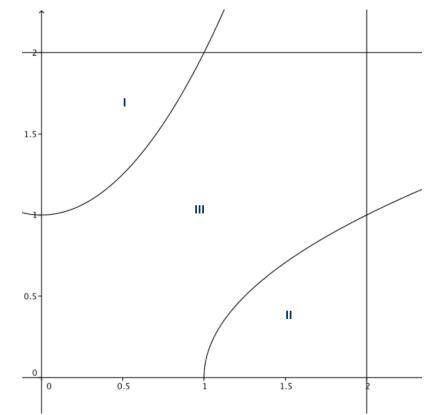
Example: exercise 2

• In the figure you see the graphs of $f(x) = x^2 + 1$ and $g(x) = \sqrt{x-1}$ and the lines x = 2 and y = 2.

Three areas can be distinguished: I, II and III.

Determine the area of each of the three areas
I, II and III in (at least) two different ways.
Be creative!

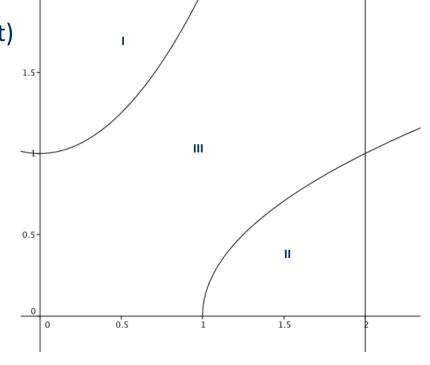
Solutions?



Exercise 2: revised

In the figure you see the graphs of $f(x) = x^2 + 1$ and $g(x) = \sqrt{x-1}$ and the lines x = 2 and y = 2. Whitin these formulas, three aras can be distignguished within the square formed by the positive x-axis and the y-axis and the lines x = 2 and y = 2: I, II and III.

- a) Argue that the area size of area I is equal to the area size of area II.
- b) Determine the area of each of the three areas I, II and III in (at least)2 different ways. Be creative!



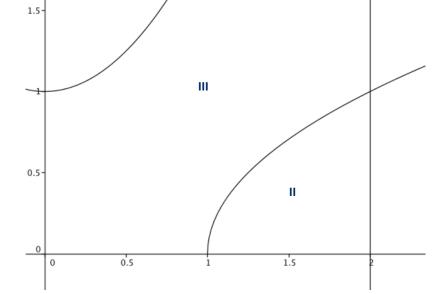
Exercise 2: revised

In the figure you see the graphs of $f(x) = x^2 + 1$ and $g(x) = \sqrt{x-1}$ and the lines x = 2 and y = 2. Whitin these formulas, three aras can be distignguished within the square formed by the positive x-axis and the y-axis and the lines x = 2 and y = 2: I, II and III.

- a) Argue that the area size of area I is equal to the area size of area II.
- b) Determine the area of each of the three areas I, II and III in (at least)2 different ways. Be creative!

Tip: use your answer to question a) and properties of functions such as inverse function, symmetry, etc.

What do you notice?



Conclusion

- Provide feasible, challenging assignments by sufficiently differentiating!
 - Cf. problems with open vs. closed formulation
- Can you learn 'problem solving'?
 - To some extent
 - Provide a closed variant of assignment for students whose problem-solving skills have not yet been developed strongly enough

Assignment

- Have a look at the English mathematics textbooks
- Select an exercise.
- If it is an open variant of assignment, provide a closed variant of assignment for students whose problem-solving skills have not yet been developed strongly enough
- If it is a closed variant of assignment, provide an open variant of assignment for students whose problem-solving skills have already been developed strongly enough

